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In classical theorems on convergence of Gaussian quadrature and Lagrangian
interpolation for a weight da(x), an important role is played by infinitely differen­
tiable functions G(x), satisfying G(2n)(x) >0, x E supp[daJ, n =0, 1,2,..., and

""G(x)da(x)<oo. When da(x)=exp(-2Q(x))dx, where Q(x) is even and
positive for large lxi, and Q' and Q" satisfy mild restrictions, it is shown G(x) can
be taken to be an even entire function growing like exp(2Q(x));.jJ(x) as x-> 00,

where ljJ(x) = Xl H or ljJ(x) = x(log x)! H or lfi(x) = x(log x)(loglog x)!~' and so on,
for some 8> 0. In particular the results are valid for Q(x) = Ixl ", A> O. Further,
functions F(x) are obtained which are absolutely monotone in (- 00,0), completely
monotone in (0, (0) and have prescribed singular growth at O. The latter functions
playa role in convergence of Gaussian quadrature for singular integrands. © 1986
Academic Press, Inc.

1. INTRODUCTION

Let dcx(x) be a nonnegative mass distribution on the real line whose sup­
port contains infinitely many points. Let Qn(dcx; f) denote the Gauss
quadrature rule of order n associated with dcx. The following result of
Shohat (see Freud [2, p. 93, Theorem 1.6J) is classical.

THEOREM. Let dcx(x) be the unique solution of its Hamburger moment
problem. Let f be Riemann-Stieltjes integrable with respect to dcx over each
finite interval. Assume further there exists a function G(x), x EO IR such that
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G(2n)(x) ~ 0,

j") G(x)dcx(x)<CXJ,
- 00
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X EO IR, n = 0, 1,2,..., (1)
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and
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lim j(x)/G(x) =0.
Ixl ~ 00

(3 )

A similar theorem [2, p. 97, Theorem 2.1] holds for mean convergence
of Lagrange interpolation at the zeros of the orthogonal polynomials for
da. Esser [1] noticed that (3) can be replaced by

lim sup I j(x)I/G(x) < 00.
Ixl ~ 00

(4)

The dominating functions G also play a role in convergence of product
integration rules based on Gauss quadrature abscissas [9], and functions
G with the property (1) are useful in studying convergence of Gauss
quadrature for singular integrands [8].

Recently, there has been much interest in orthogonal polynomials for
weights on the whole real line (Nevai [10]). Freud was the first to consider
such weights in detail, and typically [3,4], he investigated weights
da(x) = exp( -2Q(x)) dx, where Q(x) was positive and even, and Q' and
Q" satisfied mild restrictions. In view of the current interest in Freud's
weights, it seems desirable to know what order of growth of G is possible in
Shohat's theorem and thereby to replace the implicit conditions (1), (2),
and (4) by a more explicit condition on f

In this note, we show that for Freud's weights, G(x) can be taken to be
an even entire function growing as x ~ 00 like exp(2Q(x) )jl/J(x), where for
arbitrary B > 0,

or l/t(x) = x(1og x)(log log X)l+£,

or l/t(x) = x(1og X)l +£

(5)

and so on. This is "best possible" in the sense that we cannot allow B = 0,
for else JCX'oo G(x) da(x) = 00. Hence for Freud's weights, one can replace
(1), (2), and (4) by

lim j(x) exp( - 2Q(x)) l/t( Ixl) = 0,
Ixl ~ 00

where l/t(x) is as in (5). In particular, this is true when Q(x)=lxl'\ A~1.

Although our entire functions G(x) exist if Q(x)= Ixl'\ O<A< 1, the
moment problems for the corresponding weights are indeterminate and
Shohat's theorem is false (see [12]). We note that for the Hermite weight,
the G's here substantially improve on those in Freud [2, Table, p. 96] and



GAUSSIA~ Ql:ADRATCRE 299

on the growth allowed onfin Uspensky [13, p. 559], but are the same as
those in Shohat and Tamarkin [12, p. 122].

DEFINITIO~. Let d:x(x)~O in IR with S', d:x(x) < x. Let there exist
O~(}< 1 and A, B>O sueh that :x'(x)=exp( -2Q(x)), Ixi ~A, where Q(x)

is even. positive and Q'(x) is absolutely continuous for Ix! ~ A. and

Q'(u»O,

-0 ~ uQ"(u)iQ'(u) ~ B,

u~A.

u~A.

(6)

Then we shall call d:x(x) a Freud weight. If further, Q"(x) is absolutely con­
tinuous for Ixl ~ A, while

u] IQ"'(u)I/Q'(u) ~ B, u~A. (8l

then we shall call d:x(x) a smooth Freud weight.

Note that (6), (7), and (X) hold if Q(x)=!xl;, i.>O. We shall use the
usual o. 0, ~ notation. Thus, for example, h(x)~ g(x) if there exist
positive C and ('2 such that ('I ~ h(x)/g(x) ~ ('2 for the relevant range of
x.

Our main result is

THEORI'\l l. IJet d::t(x) be a Freud weight. Le/

t/J(r) = r"(log 1')" (log log r)' (log log log If, ..., (9)

for large enough 1', where a, b, c, d...., are arbitrary real numbers of which at
most finitely many are nonzero. Then there exists an aen entire fUIlCl ion
G(x) sati,l/ring

and

X E IR, n = 0, I. 2,..., (10)

G(r) ~ exp(2Q(r) )/t/J(r), I' ---> 'y,;. (11 )

COROLLARY 2. IJet d::t(x) be a Freud weight. Let I; > 0 and let

or

or

t/J(r) = r(log I'll I ,

t/J(r) = r(log r)(log log 1')1 ! ,

( 12)

and so on. Then there exists an even entire function C(x), sa/i.lfving (10),
( II), and J::. f, C(x) d::t( x ) < J,;'.
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Remarks. (a) Theorem 1 is related to Levin's result [7, pp. 90-93,
Theorems 1,2] on the existence of entire functions with given proximate
order. Levin's results are less precise than those here (and his functions do
not have property (10)) but his restrictions on the proximate order are
weaker than the corresponding assumptions on Q above.

(b) The asymptotic formula (11) with ljJ(r) = 1 shows that in crude
estimation of the Christoffel functions, or the largest zeros of the
orthogonal polynomials, for a Freud weight, we may replace the weight by
the reciprocal of an entire function.

Recall that F(x) is absolutely (completely) monotone in a set S if
pm)(x)?O « _1)m pm)(x)?O), XES, m=O, 1,2,.... We prove also

THEOREM 3. Let z E IR. For small enough positive u, let

rjJ(u)=ua Ilogul b Ilog Ilogull C Ilog Ilog IlogulI Id, ... , (13)

where a < 0 and b, c, d, ..., are arbitrary real numbers of which at most finitely
many are nonzero. Then there exists a function F(x) absolutely monotone in
(- 00, z), completely monotone in (z, (0) and such that, as X --+ Z,

F(x)=rjJ(lx-zl){1 +O(llog Ix-zll- 1/2 (log Ilog Ix-zll)3/2)}. (14)

COROLLARY 4. Let do:(x)?O in IR with Ie:.'oo do:(x) < 00. Let zEIR, and
assume o:'(x)"-'1 near z. Let 0<8< 1 and

or

rjJ(u) = u- 1+e or rjJ(u)=u-1Ilogul-(1+e)

(15)

rjJ(u) = u- 1 Ilog ul- 1 Ilog Ilog ull-(1+ e)

and so on, for small enough u. Then there exists a function F(x) absolutely
monotone in (-oo,z), completely monotone in (z, 00), satisfying (14) as
x --+ z and Ie:.' 00 F(x) do:(x) < 00.

Remarks. (a) Functions such as rjJ(u)=lul-1Ilogul-(1+e) are
absolutely (completely) monotone in a left (right) neighbourhood of 0, but
not in (- 00,0)«0, 00 )). Hence Theorem 3 is not entirely trivial.

(b) Corollary 4 is useful in determining what sort of singular growth
of a function f is permissible, if convergence of (modified) Gaussian
quadrature rules is to be maintained-see Lubinsky and Sidi [9,
Definition 3.3, Theorem 3.5].

(c) We shall deduce the above results from Theorems 5 and 6, which
are stated below. First, however, we need some notation. Throughout let /In
be defined by
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P,n = I'o X
ndrx(x),

- co
n = 0,1,2,....

If drx(x) is a Freud weight, these moments all exist (see Lemma 7(v)). For
large enough positive x, we let qx denote the unique positive root of

and for all other x, we take qx = A. Freud introduced qx and noticed its
significance [3,4]. It follows from (6) and (7) that limx~co qx= C/J while
lim SUP,H ce Q(qn)jn < C/J (see Lemma 7(vii), (viii)). Hence

ce

GQ(x)= L (x/qn)2n n -l/2 exp(2Q(qn))
n~O

is an entire function. It also obviously satisfies (1).

THEOREM 5. Let drx(x) be a smooth Freud weight. Then

(i) f12n = 2nl/2q~n+ 1 exp( -2Q(qn)) n- 1/2T(qn)-1/2

x {I + O(n- 1
/
2 (logn)3/2)},

as n ---l> C/J, where

(17)

(18)

and

T(x) = 1+xQ"(x)/Q'(x),

0< 1- e~ T(x) ~ 1+B,

Ixi~A,

Ixl~A.

(ii) GQ(r) = {nT(r)} 1/2 exp(2Q(r)){ 1+ O(Q(r) -1/2 (log r)3/2)}

as r ---l> C/J.

THEOREM 6. Let drx(x) be a Freud weight. Then

(i) f12n~q~n+1 exp( -2Q(qn» n- 1/2, n ---l> C/J.

(ii) GQ(r)~exp(2Q(r)), r ---l> C/J.

(22)

(23)

It seems noteworthy that for general weights da, with unbounded sup­
port, and for which all moments are finite, we can define

co
G(x) = L x 2n

S n/p'2n,
n~O
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where {sn) is any sequence of positive numbers satisfying L:~o Sn < 00.

Then G(x) satisfies (1) and fexo oo G(x) dlX(x) is finite, but only crude bounds
can be found for the asymptotic behavior of G, without further information
on dlX.

2. PROOF OF THEOREM 5 AND 6

The proofs use a version of Laplace's method applied by Hille [6, p. 183,
Lemma 14.1.1] in estimating certain entire functions. One cannot directly
apply the usual Laplace method (Olver [11]) because some quantities
appear implicity in the integrals below, rather than explicitly as required in
[11]. We shall concentrate on the proof of Theorem 5 and point out the
modifications needed for Theorem 6. First, however, we gather some con­
sequences of (6)-(8). Throughout C1 , C2 , ••• , denote positive constants
independent of nand x.

LEMMA 7. Let dlX(x) be a Freud weight. Then

(i) 0 < 1-e~ T(x) ~ 1+ B, Ixl ): A, that is, (20) holds.

(ii) (d/dx){ xQ'(x)} = Q'(x) T(x) > 0, x): A. (24)

(iii) q~/qx=I/{xT(qx)},qx):A. (25)

(iv) C1X-e~Q'(X)~C2XB,x):A. (26)

(v) C3xl-e~Q(X)~C4Xl+B,x):A. (27)

(vi) Q(x)~xQ'(x), x ---+ 00. (28)

(vii) lim sup Q(qJ/x < 00. (29)
x --+ 00

(viii) CSX1/(1 +B) ~ qx ~ C6X1/(1-e), x ---+ 00.

(ix) If w > 1, then uniformly for 1~ v ~ w,

(30)

Q'(vx)~Q'(x), Ixl ):A. (31 )

(x) For large enough r, qrQ'(r) = r.

(xi) If also dlX(x) is a smooth Freud weight, then

and

(d/dx){T(qJ} = O(x- 1
), x ---+ 00,

x ---+ 00.

(32)

(33)
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Proof (i) This follows directly from (7) and (19).

(ii) This follows from (6), (19), and (20).

(iii) Differentiating (16) yields
q~Q'(qx) + qxQ"(qJ q~ = 1

so that by (16),

q~x/qx + {x/Q'(qJ} Q"(qx) q~ = 1,

=q~x/qx{ 1 + Q"(qJ qxlQ'(qJ} = 1,

and (25) follows.

(iv) Now by (7), for u?; A,

~()/u ~ Q"(u)/Q'(u) ~ B/u.

Integrating from A to x yields

303

- () log(x/A) ~ 10g(Q'(x)/Q'(A)) ~ B log(x/A),

and (26) follows.

(v) This follows by integrating (iv), and as Q(x»O, x?;A.

(vi) Q(x)-Q(A)= [Q'(u)du~(l-())-l[Q'(U)T(U)du(by (20))

= (1 - ())-I {xQ'(x) - AQ'(A)}

by (24). Similarly (20) yields

Q(x) - Q(A)?; (1 + B)-'{XQ'(X) - AQ'(A)}

and (28) follows.

(vii) By (28) and (16), Q(qJ~qxQ'(qJ = x.

(viii) By (16) and (26), for large enough x,

x = qx Q'(qx) ~ C2q~+ 1

which yields the left inequality in (30). Similarly we obtain the right
inequality.

(ix) We see (compare [4, p. 22J) that

Q'(vx)/Q'(x) = exp ([X Q"(u)/Q'(u) dU) ~ exp (B [X dU/U) ~ WB,

by (7). Similarly for the lower bound.

(x) Now qrQ'(rjQ'(qrQ'(r)) = rQ'(r), by (16). As (16) has a unique
solution for large x, the result follows.
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(xi) A straightforward calculation and (25) shows that

Then (7), (8) and (20) yield (32). Further (25) and (32) then yield (33). I
Proof of Theorem 5(i). Let V2n = S~A x 2n do::(x), n = 0, 1, 2, .... We see

that

where

!12n - v2n = 2 fro exp(g(n, u)) du,
A

g(n, u) = 2n log u - 2Q(u),

n =0,1,2, ...,

u~A.

(34)

(35)

Let' denote differentiation with respect to u, for n fixed. Then using (16)
and (19),

g'(n, u)=2n/u-2Q'(u);

g"(n, u) = -2n/u2- 2Q"(u);

Next, let K be a positive constant, and

g'(n, qn) = 0.

g"(n, qn) = -2nT(qn)/q~·

n= 1, 2, ....

(36)

(37)

(38)

At this stage of the proof, we shall drop the subscript n from IJn and qn' for
notational simplicity. Let Iv - ql ~ IJ = o(q). By (37),

g"(n,v)-g"(n,q)= -2n(v- 2_q-2)+2rQ"'(u)du
v

=O(n Iv-ql q-3)+O(lv-q! Q'(q)q-2)

(by (8) and Lemma 7(ix))

= O(nIJq -3), by (16).

Hence, by the second part of (36) and by Taylor's formula about u = q,
there exists v between u and q such that

g(n, u) - g(n, q) = (u - q)2 g"(n, v)/2

= -nT(q) q-2(U _ q)2 + O(nIJ 3q-3), lu - ql ~ IJ,
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by the second part of (37). We deduce that

J
q+ry

exp(g(n, u)) du
q-ry

305

a -;. 00.

J
q+ry

= exp(g(n, q)) exp( - nT(q) q -2(U - qf) du{ 1+ O(n1]3q - 3)}
q-ry

=q exp( g(n, q))(n/ {nT(q)}) 1/2{ 1+ O(n -1/2(log n )3/2)

+ O(exp( - (1- B) K log n )/(log n)1/2)}. (39)

Here we have used the left inequality in Lemma 7(i), the definition (38) of
1], the substitution x = (nT(q)) 1/2 q -1 (u - q), as wen as

r exp( _x2
) dx = n 1

/
2 + O(a- l exp( _a 2

)),
-il

We next bound S~+ry exp(g(n, u)) duo It is noteworthy that the proof below
can be greatly simplified if QI/(x);::: O. Now by (16), (35), and (36),

g(n, u)-g(n, q)= -2 rv- 1{vQ'(v)-qQ'(q)} dv
q

= -2rV-I rQ'(x) T(x) dx dv (by (24)),
q q

= -2rQ'(x) T(x) log(u/x) dx, (40)
q

by changing the order of integration. We split the range [q + 1], 00) into
1= [q+1], 3qJ and J= [3q, 00). First, for uEI, q~u. Then Lemma 7(i)
and (ix) show Q'(x)~Q'(q) and T(x)~l uniformly for XE[q,U]. As
log(u/x);:::O in (40), we have for uEI,

g(n, u) - g(n, q) ~ - C7 Q'(q) rlog(u/x) dx
q

J
q + ry/2

~ -C7Q'(q) log((q+/J)/(q+1J/2))dx
q

~ - C7(n/q)(1J/2)(1]/(3q)), for large n

(by (16) and the inequality loge! + u) ~ u, u;::: 0)

~ - CgKlog n, for large n,
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where Cs is independent of nand K. We deduce that

f exp(g(n, u)) du ~ exp(g(n, q)) n- CSK(2q).
I

Next, for u EJ, Lemma 7(i) and (iv) and (40) yield

g(n, u) - g(n, q) ~ -2(1- 8) C1rX-B log(ujx) dx
q

Hence,

f exp(g(n, u)) du~exp(g(n, q)) foo exp( -C9 U
I- IJ

) du
J 3q

= O(exp(g(n, q)) exp( -C9q l-IJ)).

(41 )

Then if K is large enough, (41) and the fact that q is of polynomial
growth (Lemma 7(viii)) yield

foo exp(g(n, u)) du = o(q exp(g(n, q)) n-I(log n)3/2). (42)
q+ry

Proceeding similarly, we obtain an analagous estimate for
S~-ry exp(g(n, u)) duo Finally (34), (35), (39), and (42) yield for large
enough K,

where we have restored the subscripts. As V 2n = O(A 2n
), (18) follows. I

Proof of Theorem 6(i). The only parts of the proof of Theorem 5(i) that
need to be modified are those where Q'" was used. Hence we see (34)-(38)
and (40)-(42) hold as before. We need estimate only H:~ exp(g(n, u)) du in
a different way, as Q'" was used in estimating g"(n, v)-g"(n, q). Now (7),
(16), and (37) yield, for Iv-ql ~'1,

g"(n, v)~ -2njv2+28Q'(v)/v

= -2nv- 2{(1- 8) - 8n- l (vQ'(v) - qQ'(q))}

= -2nv- 2{(1- 8) - 8n- 1rQ'(x) T(x) dX}
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(by (24))

(by Lemma 7(i) and (ix))

= -2nv- Z{(1-8)+O(n- 1/Z(logn)1/Z)}

(by (16) and (38))
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Similarly, g"(n, v) ')0 -Cllnq-Z, Iv-ql ~'1. We deduce that for lu-ql ~'1,

-Cllnq-Z(u-qf~g(n, u)- g(n, q)~ -ClOnq-Z(u-q?

Hence, S~:+:~ exp(g(n, u)) du",exp(g(n, q)) qn liZ. Proceeding as before, we
obtain (22). I

Proof of Theorem 5(ii). Let

h(r, u) = 2u log(r/qJ + 2Q(qJ - (log u)/2, u> 0,

so that, by (17),

CD

GQ(r) = I exp(h(r, n)).
n=O

(44)

We shall first estimate J~ exp(h(r, u)) du, where D is large enough for (25),
(30), (32), and (33) to hold for all x ')0 D. Let' denote differentiation with
respect to u for fixed r. Using (16), we see

h'(r, u) = 2log(r/qu) -1/(2u),

and (25) shows

h"(r, u)= -2/{uT(qJ} +u- z/2,

Now fix r> 0, and let y be the root of

h'(r, y) = 0,

u ')0 D,

u')o D.

(45)

(46)

(47)

which by (45) is equivalent to

r = qy exp((4y)-1)

= qy + qy/(4y) + O(qy/YZ), Y -+ 00.

(48 )

(49)
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Now h'(r, D) > 0 for large r, while h'(r, (0) = -00. Hence y exists. Further
(46) and Lemma 7(i) show h"(r, u) < 0 for large u so that h'(r, u) is
decreasing for large u-hence y is unique for large r. We next compare the
values of some functions at rand qy, noting that r - qy = O(qyjy) = o(qy).
Now (7) and Lemma 7(ix) show

Q'(r) - Q'(qy) =rQ"(u) du
qy

= O(lr - qyl Q'(qy)jqy)

= 0(1jqy) = 0(r- 1
),

by (16). Further for some ~ between rand qy,

(50)

Q(r) - Q(qy) = (r - qy) Q'(qy) + (r - qy)2 Q"(~)/2

= {qyj(4y) + 0(qyy-2)} yjqy + O(q; y-2) O(Q'(qy)/qy)

(by (49), (16) and (49), (7))

by (16). Next, by (16), (49), and (50),

y=qyQ'(qy)= {r+O(qyjy)} Q'(qy)

= r{Q'(r) + 0(r- 1
)} + 0(1)

=rQ'(r)+O(1).

In particular, by Lemma 7(vi),

y~rQ'(r)~Q(r).

Next by (43),

h(r, y) = 2y log(rjqy) + 2Q(qy) - (log y)j2

=! + 2{Q(r) - ~ + O(y-l)} - (log rQ'(r))/2 + O(y-l)

(by (48); (51); and (52), (53))

= 2Q(r) - (log rQ'(r))j2 + O(y-l).

Now let

w = w(y) = (Ky log y)I/2,

(51)

(52)

(53 )

(54)

(55)
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where K is some large positive constant. Further, let Iv - yl ~ w. Then
(52), v - rQ'(r) = O(w) = o(y). Hence (46) with u = rQ'(r) and Lemma
yield

f
rQ'(r) d

h"(r, v)= -2/(rQ'(r) T(r))+2 -d {l/(xT(qx))} dx+v-- 2/2
v x

= -2/(rQ'(r) T(r)) + O(wy-2), Iv - yl ~ w,

309

by (32). Expanding h(r, u) about u = y and using (47), we see there exists v

between u and y such that

h(r, u)=h(r, y)+ (u- y)2 h"(r, v)/2

= h(r, y) - (u- y)2/(rQ'(r) T(r)) + O(W3y-2),

Then, as in the proof of Theorem 5(i), and using (53), (55), and (57) with
K large enough,

r+ exp(h(r, u)) du
y-w

= {nrQ'(r) T(r)} 1/2 exp(h(r, y)){ 1 + O( Q(r) -1/2 (log Q(r ))3/2)}

= {nT(r)} 1/2 exp(2Q(r)){ 1+ O(Q(r)-1/2 (log r)3/2)}, (58)

by (54), (53), and as Lemma 7(v) shows log Q(r)~log r.
We next estimate f;;'+w exp(h(r, u)) duo Now h"(r, u) < 0 for large u, by (46)
and Lemma 7(i). So for large r, and for u> y, h'(r, u) < °and both h'(r,
and h(r, u) are decreasing. Further Lemma 7(vii) and (43) show that
limu~x h(r, u)= -00. Then

t: IV exp(h(r, u)) du ~ t: IV exp(h(r, u)) h'(r, u )/h'(r, y + w) du

= -exp(h(r, y + w))/h'(r, y + (59)

Now, as h'(r, u) is decreasing, and negative for u> y,

h(r, y+w)-h(r, y)~(w/2)h'(r,y+w/2).

Further, if c>O, (45) and (46) yield

h'(r, y + cw) = 2Iog(qy/qy+cw) + 21og(r/qy) -1/(2(y + cw))

= -2 r+
cIV

{uT(qJ}-1 du+O(l/y)
y
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(by Lemma 7(iii), (48), and as w=o(y))

~ -2(cw)(y + cw)-1(1 + B)-I + O(1/y) ~ -C12 w/y,

by Lemma 7(i). Applying this last inequality to (59) and (60), we obtain

ro exp(h(r, u)) du ~ C13 exp(h(r, y) - C I4 W
2/y)(y/w). (61)

y+w

Proceeding similarly, we obtain a similar estimate for H;- w exp(h(r, u)) duo
If we choose K large enough, (54), (55), (58), and (61) show

fJ exp(h(r, u)) du = {nT(r)} 1/2 exp(2Q(r)){ 1+ O(Q(r) -1/2 (log r)3/2)}.

D (62)

Finally, as h(r, u) increases for u E [D, y] and decreases for u E [y, C()), we
see from (44) that

Gdr) = tJO

exp(h(r, u)) du +O(exp(h(r, y))).

Together with (62), this yields (21). I
Proof of Theorem 6(ii). The only parts of the proof of Theorem 5(ii)

that need to be modified are those where Q'" was used. Hence we see that
(43)-(55) and (59)-(61) hold as before. We need modify only (56) to (58)
as QIII appears in (d/dx){T(qx)} (see (56) and the proof of Lemma 7(xi)).
Now if Iv- yl ~w, Lemma 7(i), (46), and (53) show

h"(r, v)~ -1/v~ -1/y~ -1/(rQ'(r)).

Then (57) must be replaced by

-C1S(u- y)2/(rQ'(r))~h(r,u)-h(r, y)~ -C I6(U- y)2j(rQ'(r)),

where CIS and C16 are independent of rand U. Then instead of (58), we
obtain

f
y + w

exp(h(r, u)) du~exp(h(r, y))(rQ'(r))1/2~exp(2Q(r)),
y-w

and the proof is completed as before. I
Remark. If we set GQ(r) = n-1/2L:~o(X/qn)2n(nT(qn))-1/2exp(2Q(qn)),

rather than defining GQ by (17), then we rnay remove the "nuisance factor"
(nT(r))1 /2 in (21). However, we would then need the existence of Q(4), Q(S).
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To prove Theorem 1, we shall apply Theorem 6(ii) to a suitable Freud
weight, and to prove Theorem 3, we shall apply Theorem 5(ii) to a suitable
smooth Freud weight, after a simple transformation.

Proof of Theorem 1. Let ljJ(r) be as in (9), with at most finitely many of
a. h, c, d, .... nonzero. Let

and

Q*(r) = Q(r) - (log ljJ(r))/2,

dx*(x) = exp( - 2Q*( Ixl)) dx.

r~A, (63 )

(64)

We may assume that A is so large that ljJ(r) is infinitely differentiable for
r~A. By (9), (28), and (63),

dQ*
~ (r) = Q'(r) + O(I/r)

=Q'(r){l +O(Q(r) I)}.

while (d2Q*/dr2 )(r) = Q"(r) + 0(r- 2
). Then by (28) and (7),

I" d2~* (1") /dQ* (r) = rQ"(r)/Q'(r) + O(liQ(I"))
dr . dr

) :::; B + o( I)

( ~ -() + o( I).

It follows that Q* satifies (6) and (7) with A, B. 0 slightly larger than the
corresponding quantities for e. Hence da* is a Freud weight, and (23)
shows

GQ.(r) ~ cxp(2Q*(r)) = exp(2Q(r) )/ljJ(r). I

Corollary 2 follows from Theorem I as

f"'- dr/ljJ(r) < x, (65 )

if l{J(r) is given by (12). We remark that one can choose more general ljJV)
than those in (9) or (12). For the conclusion of Theorem 1 to hold, we
really only need ljJ'(r) to be absolutely continuous for large r, with
ljJ'(r)/ljJ(r) and rl{J"(r)/ljJ(r) and r(ljJ'(r)N(r))2 all o(l/Q'(r)) as r -+ 00. For
the conclusion of Corollary 2 to hold, one would require, in addition, (65)
to hold. Before proving Theorem 3, we need

640.46 "3-'"!
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LEMMA 8. Let G(x) be absolutely monotone in (0,00). Let

and

p(x) = -log(lxl/(l + Ixl)),

F(x) = G(p(x)),

xEIR\{O},

xEIR\{O}.

(66)

Then F(x) is absolutely monotone in (- 00,0) and completely monotone in
(0, 00).

Proof Since p is even, and hence F is even, it suffices to prove complete
monotonicity of F in (0, 00). Now p(x) maps x E (0, 00) onto p E (0, 00).
Further

X E (0, 00),

so that p is completely monotone in (0, 00). Next, by the formula for
higher derivatives of a composite function [5, p. 19, No.2 of 0.430],
applied to F(x) = G(p(x)),

dnF(x) = n! d"'G(p) (pl)i (pll)i (p"')h ... (p(l))k
dxn Li!j!h!"'k! dpm 1! 2! 3! l!'

where the sum is over all solutions in nonnegative integers of the equation
i +2j + 3h + ... + lk = nand m = i + j +h + ... +k. Now G(m)(p);;::' 0,
m = 0,1,2, ..., while (p')i (p")i (p"')h ... (p(l))k has sign (_1)i+2i+3h+ ··lk =
( -1 y, as p is completely monotone. So all term.s in the sum have sign
( -1)" and F is completely monotone in (0, 00). I

Proof of Theorem 3. We may assume z = 0; the general case follows
from replacing F(x) below by F(x-z). Let

Q(x) = -(!){ax - b log x - c log log x - dlog log log x - "'},

for large positive x, where a, b, c, d, ..., are as at (13), and let dr:x(x) =
exp( - 2Q( Ixl)) dx for large IxI- It is easy to see that Q satisfies (6), (7), and
(8) as a < 0, and hence dr:x(x) is a smooth Freud weight. Further from (19),
we see T(r) = 1 +O(l/r) while Q(r)~r as r -+ 00. Then Theorem 5(ii)
shows, as r -+ 00,

Next, from (17) we see GQ is absolutely monotone in (0,00). Let
F(x)=n- 1

/
2GQ(p(x)), where p(x) is as in (66). By Lemma 8, F is

absolutely monotone in (0, 00). Finally

p(x) = Ilog Ixll + O(lxl), x-+O,
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so by (13), (67), and as Q'(x) is bounded for large x,

F(x) = exp(2Q( Ilog Ixll) -I O( Ixl »){ I + O( Ilog Ix! 1- 1 2 Ilog !Iog Ixi 11
12

)}

=¢J(x){1+0(lloglxll 1/21 10gl loglxlii 3'2)}, x~O. I

Pro%/Corollary 4. Since C('(x)~ I near z we have for suitable small b,

J::~; F(x) dx(x)-r ~(Iul) du < x,

by (14) and (15). Further F(x) is bounded in (-00,z-6) and m
(z + b, y:). so that S.-x, F(x) dCt(x) < c.c. I

We remark that, as after the proof of Theorem I, we may allow more
general ¢J than those given by (13) or (15}.

j\iote added in proof Extensions of the results here to Q of nonpolynomial growt!: wi!!
appear in the Proceedings of the Laguerre Symposium at Bar-Ie-Due. Springer, 1985.
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